Categories
_ Knowledge Sharing News Partnership

CLOUD AFFECTS | WITH PHILIP SAMARTZIS & ROLAND SNOOKS


Cloud Affects, insitu, Shenzhen Biennale. Photo: RMIT University

Cloud Affects is a large-scale architectural installation by Associate Professor Roland Snooks, Chief Investigator, Design Robotics, and Associate Professor Philip Samartzis, sound artist. Crafted using algorithmic generative design and robot-assisted additive manufacturing, this work explores the impact of cloud computing. Often thought of as immaterial and benign, the cloud is, in fact, a vast ecosystem of over 40 billion devices, powered by a network of energy-hungry data centres, which will consume as much as twenty percent of the earth’s energy generation by 2025. This novel research outcome operated as an agent for meaningful public engagement, as well as an exemplar of the structural potential of 3D printed assemblages.

Roland_Snooks_3D_Assemblage
Robotic-assisted 3D Assemblage, Urban Art Projects, Brisbane
agentBody Algorithms & Topological Complexity

Snooks and Laura Harper, Roland Snooks Studio, explain in their paper, “Printed Assemblages: A Co-Evolution of Composite Techtonics and Additive Manufacturing Techniques” (FABRICATE 2020), how Cloud Affect was designed using an agentBody algorithm. This behavioural formation process combined form, structure and ornament into topologically-complex lattices and surfaces. These architectural behaviours establish local relationships between material elements. Such interaction is driven by direct criteria, like structural or programmatic requirements, or more esoteric concerns relating to the generation of form or pattern.
Snooks and Harper explain the evolution of this process:
“This methodology, which has been in development since 2002, draws on the logic of swarm intelligence and operates through multi-agent algorithms (Snooks, 2020). Swarm intelligence describes the collective behaviour of decentralised systems, in which the non-linear interaction of its constituent parts self-organise to generate emergent behaviour (Bonabeau et al., 1999). Repositioning this logic as an architectural design process involves encoding architectural design intention within computational agents. It is the interaction of these agents that leads to a self-organisation of design intention and the generation of emergent architectural forms and organisational patterns.” (2020, p.204).

Installing Cloud Affect. Photo: RMIT University
Advanced Manufacturing Cloud Affects

Snooks and his team manifested their emergent form using carbon fibre and large-scale robot-assisted 3D-printing. Essentially, the internal lattice became a structural skeleton, containing a series of hollow formworks, enclosed in a second translucent skin. In addition, the inner and outer geometries were periodically laminated to ensure structural rigidity. Each joint was resolved by casting laser-cut steel plates into the carbon fibre. Certainly, the use of this technology increased quality, reduced risk, and resulted in more efficient workflows.
Cloud Affects demonstrates that structure is not subservient to the geometry of the skin (such as taping to inflatable or printed surfaces) or the convergence to physically efficient forms (such as minimal surfaces), but instead, structure and skin negotiate a nuanced interrelationship with the capacity to generate complex and intricate form. Given the limitations of the printing bed, the final work was designed a series of pre-fabricated components with the capacity to be disassembled. Snooks discusses this process in detail in Inside the Learning Factory: Architectural Robotics.
The final outcome draws complex data design and manufacturing processes into focus, questioning how viewers might feel about the most sophisticated technologies – software, AI, and algorithms – all powered by polluting carbon-based systems that contribute to Climate change. In contrast, the 3D printing process resulted in a form of digital craft akin to coiling in pottery or basketry, creating a tactile surface capable of refracting light and drawing viewers to the piece. This juxtaposition between tangible and intangible materials, technology and making, old and new processes, creates a powerful pause for thought.

Cloud Affects Assembly in process. Photo: RMIT University
Design Robotics & Futuremaking

This project attempted to reify a structure from the nebulous via a process of futuremaking: to materialise and express intangible algorithms and make real the energy required to prop up the virtual cloud. In manifesting the tangible, it sought to offer a new architectural geometric expression, one that can only emerge from the use of advanced computation within both the design and robotic fabrication processes.
Future cities will increasingly rely on advanced cloud computing, from simple algorithmic procedures to artificial intelligence, for their design, construction and infrastructural logistics. These cloud-based algorithms become the unseen structural framework behind the evolution of urbanism and architecture. Using technology to assess impact and evolve material outcomes inevitably evokes conversations beyond the realms of art, architecture and design.



This article is adapted from:
Samartzis, Philip “Cloud Affects” Bogong Sound, Bogong Centre for Sound, 30 March 2020, http://bogongsound.com.au/projects/cloud-affects. Accessed 20 Oct. 2020.
Snooks, Roland, and Laura Harper. “Printed Assemblages: A Co-Evolution of Composite Techtonics and Additive Manufacturing Techniques.” FABRICATE 2020: Making Resilient Architecture, by Jane Burry et al., UCL Press, London, 2020, pp. 202–209. JSTOR, www.jstor.org/stable/j.ctv13xpsvw.31. Accessed 19 Oct. 2020.

Categories
_ Knowledge Sharing Learn News

A LIFETIME OF SUMMERS | WITH NIKE SAVVAS & UAP

A Lifetime of Endless Summers from below

There is a dusting of jolly confetti falling gracefully from the ceiling of The Exchange, Sydney, the spiralling, light-filled hive, commissioned by Lendlease Australia, and designed by Kengo Kuma & Associates. A Lifetime of Endless Summers by renowned artist Nike Savvas, cascades in shades of yellow, orange, pink, green, and blue, capturing the wind, coaxing the harbour breeze indoors. In order to deliver this piece, in collaboration with Savvas, Urban Art Projects (UAP) experimented with interaction design using Augmented Reality (AR) and Virtual Reality (VR) technology.

The view from inside the HoloLens
Interaction Design (Wind)

The freedom to explore and experiment consistently drove this project forward, into new and unexpected territory, not least because this was a complex and varied piece. The artwork covers a 12-metre diametre and comprises 9,200 aluminium tabs finished in numerous fluorescent paint finishes. Each component was suspended via a system of 715 ultra-fine wire cables that fixed directly into the ceiling.
Once Savvas and Lendlease reached a consensus regarding the immersive experience, wind testing was employed at the UAP’s Brisbane foundry.  In fabrication, the team determined the precise spacing requirements. This involved regulating clear gaps to prevent individual wire drops from getting knotted and twisted. This kind of optimised precision enabled each wire drop to gently oscillate, delivering a range of sensations via an interplay between gentle breezes and the kinetic field of colour.
In production, the aluminium components were carefully designed and mounted to sway at random angles between an approximate range of 0-45 degrees. Each wire was placed at a minimum midpoint of 300 millimetres, with an extra 600-gram weight appended at the end to ensure just the right amount of gravity and sway.

AR & VR Solutions

The piece was successfully delivered using AR HoloLens headsets and Fologram VR mixed-reality software to manage the complexities of the installation on-site; a process that flawlessly encapsulates Savvas’ sense of playful ingenuity, and UAP’s commitment to delivering cutting-edge solutions built on a combination of value-added processes and technological innovation.
UAP also employed these tried and tested AR and VR technologies during the documentation and installation stage. This allowed the installation team to move freely, whilst skillfully navigating and visualizing each focal point via a direct overlay of digital elements amidst what already existed in the physical world.
Using Hologram and Fologram allowed UAP’s craft makers to execute the exact placement of the drill holes. The same holes were then carefully matched with the suspended wire drops and ceiling trays, which sat over-and-above a circular ceiling between the market hall and mezzanine restaurant. All those involved across the process remain extremely positive and enthusiastic about their experience and its impact on the outcome. Seamlessly combining AR and VR construction not only made for a safer work environment but saved days of time, opening up opportunities to integrate human creativity and intuition into the process.
Advanced manufacturing systems and technologies helped reduce the occurrence of human errors, which reduced the risks and costs traditionally involved in bespoke design and construction. As such, the use of Fologram and HoloLens delivered continuous engagement, and the opportunity to expand the scope of vision systems in design-led manufacturing.

Detail, confetti components
Delivering Bespoke Outcomes

As in many industries, technological advances and human artistry in manufacturing and design are converging. Whilst some fear that automation will kill jobs, Design Robotics and UAP recognise the important role technological advances play in supporting skilled workers. Human/robot interaction not only assists in the completion of tedious and repetitive tasks but also reduces risk. In this context, human partners are free to explore creative tasks, which has a direct impact on productivity and wellbeing.
Via the support of the Innovative Manufacturing Cooperative Research Centre (IMCRC), Design Robotics and UAP have partnered to present a range of new possibilities. The goal is simple – to design for human intelligence and optimize the relationship between people and machines. Watch this space as Design Robotics and UAP are committed to operating at the forefront of novel solutions, meshing technology with human creativity to explore a myriad of new possibilities.
A Lifetime of Summers launches a long-term commitment to robotic vision systems and software user-interfaces that enhance and support skilled workers. Associate Professor Dr. Glenda Caldwell, Cheif Investigator, Design Robotics described the process as “…the opportunity to work collaboratively with robotic technologies to decrease human risk in manufacturing and increase innovation and creativity”.
Reimagining the design process and pushing boundaries in industrial robotic capabilities empowers people to navigate increasing workplace complexity. At its heart, this work identifies what robots and machines do best – problem-solving, and matches it with what humans do best – social intelligence and contextual understanding. This symbiosis creates resilient outcomes, and enhanced processes, firmly placing Australia at the forefront of innovation and enterprise.
https://www.facebook.com/uapco/videos/2906429592742845/

Entering the artwork
The Concept of Freedom

Thanks to collaborative partnerships, like Design Robotics and UAP, embracing technology ensures value-added mass customization. With an eye on addressing logistical complexities, solving engineering challenges, and meeting tight deadlines. In this context, artists, like Savvas, can focus their attention on creative potential. This not only informs the work of the Design Robotics team but fosters a culture of cross-germination and skills acquisition, which impacts UAP’s crafts makers and the manufacturing sector Australia-wide, and internationally.
On one hand, A Lifetime of Summers is playful, teasing the vibrant kinesis between form, wind, and colour. Equally, it is profound in the pursuit of meaning. By simply standing beneath it, viewers are transported into a hypnotic trance, revelling and reflecting whilst charmed by a sense of freedom and the optimism of endless summers. Yet, few will appreciate the cutting-edge approaches that were applied in its making – that’s our little secret.

Categories
_ Knowledge Sharing Learn News Project

BOY WALKING | WITH RONNIE VAN HOUT & UAP

Artist Interview: Ronnie van Hout from UAP Company on Vimeo.

Captured in mid-motion, lost in thought, is a giant figure dubbed, Boy Walking by artist Ronnie van Hout. This towering landmark situated in a civic parkland along the Dominion Road edge of Balmoral’s Potters Park in Auckland, New Zealand, was commissioned by Auckland Council and manufactured by Urban Art Projects (UAP) over the course of 18 months. Fabricated using a relatively new process including robotic milling and 3D technology, this work tells the story of van Hout’s commitment to experimentation.

The human scale at work
Why so Big?

The mammoth cast aluminum sculpture stands tall at 5.6 metres, with a horizontal dimension of 2.9 metres by 1.75 metres. Van Hout’s intention was to deliver a sense of scale and proportion with respect to human form and the surrounding landscape. As we grow, our relative scale in relation to objects shifts. In this sense, the sculpture is only large in relation to other human bodies. Van Hout jovially describes it as, “…kind of a child-made giant”.

Fabricating the head
Robots, AR, & VR

To bring Boy Walking to life, van Hout had his son digitally scanned in a striding pose, then scaled up to full size using a 3D modeling software. The fabrication of the sculpture involved a time-consuming and exacting process, including efficiency in grinding, filing, sanding, painting, and cleaning. Design Robotics worked closely with UAP’s craft makers to enhance existing knowledge in robotic fabrication.
From material selection, to design documentation, and advanced manufacturing efficiencies were built into the workflows. Virtual Reality (VR), via the use of Fologram mixed reality software, assisted patternmakers in evaluating and refining the 3-D digital model. This resulted in a segmented approach, whereby the form was cut into smaller, manageable sections in preparation for robotic milling.
A robotic arm was used for pattern milling, which at the time of fabrication was a relatively new process for UAP’s Brisbane foundry. Each pattern was cast individually in aluminium, and welded together to create the complete sculpture. In the painting process, Augmented Reality (AR) HoloLens headsets with Fologram were used to further extend human ingenuity by producing a vision of stripes and blocked colors over the actual work. This enabled the painters to clearly visualize and mask out specific sections, increasing the efficiency and accuracy of the painting process.

Matt at work, perfecting the stripes
Happy Painters Craft Perfect Stripes

According to UAP’s expert painter, Matt, the marking process took approximately one hour, where normally it would have taken him up to three hours. Van Hout remains captivated by the quality and accuracy of the painted stripe pattern Boy Walking’s shirt: “The overall finish is amazing! The paint finish turned out so much better than I would have expected.” To achieve such fine results, UAP experimented with a proprietary Grasshopper tool, which allowed them to reposition and refine the 3D model multiple times in virtual space. The outcome was then recalibrated in AR prior to the painting process.
AR also allowed van Hout and UAP’s team to visualize the size of the sculpture in relation to the site. This technology helped in assessing the overall aesthetic of the work, informing design changes and improvements throughout the production process. For those involved in the craft making process, incorporating advanced manufacturing technologies was like having an extension of the hand.  For van Hout, the process assisted him in maintaining the conceptual integrity of his vision. When asked about his thoughts on the process, without hesitation he jumped at the chance: “It would be great to experiment with this [again] in the future and see what is possible.”

Boy Walking insitu, Auckland, New Zealand
Design Robotics, UAP, & IMCRC

Through the Innovative Manufacturing Cooperative Research Centre (IMCRC), Design Robotics is collaborating with UAP to explore the use of robotic vision systems and smart software user-interfaces to streamline the process between design and custom manufacturing. Enhancing UAP’s ability to manufacture high-value products while reducing the time and cost of manufacturing, the project is an industry-leading initiative that provides not just a competitive advantage to UAP, but benefits manufacturers across Australia.

Categories
_ Knowledge Sharing Learn News

THE CANOPY | CRAFTING COMPLEX CURVES WITH AR & VR

Luke Harris | One Melbourne Quarter from UAP Company on Vimeo.

Leading architecture studio, Woods Bagot, has delivered a striking homage to fishing in the foyer of their new mixed-use development, One Melbourne Quarter. Fishing nets are a powerful cultural motif in Australia, particularly for First Nations people. The Canopy references indigenous net making and acknowledges an important connection to the traditional owners of the Yarra River – the Bunurong Boon Wurrung and Wurundjeri Woi Wurrung peoples of the Eastern Kulin Nation. The result, a striking stainless-steel installation, delivered by Urban Art Projects (UAP) using Augmented Reality (AR) and Virtual Reality (VR).

The Canopy insitu at One Melbourne Quarter
The Canopy Design

The Canopy is a graceful sculpture composed of two floating elements: a sizeable piece made of steel poised atop the main vestibule of the busy commercial tower; and, a sleek, smaller form, placed above the building’s indoor café and bar. Award-winning property developers Lendlease Australia invited UAP to operate as manufacturing partners, working closely with Woods Bagot in decrypting this complex architectural vision and fabrication workflow.

UAP team member marking the exact position of the rods with HoloLens
AR & VR Solutions

To the untrained eye, the sleek design of The Canopy appears to be a simple and clean ring of steel. However, Woods Bagot’s design was beautifully complex, incorporating an array of compound curves. This challenge was addressed by a team of craft makers, designers, and roboticists from across Design Robotics and UAP. This was the first project in which the team employed the use of AR and VR, specifically HoloLens headsets, and Fologram mixed reality software.
Ordinarily, documentation and fabrication processes are exacting and time-consuming – requiring high-levels of accuracy and efficiency, alongside many drawings. In contrast, HoloLens and Fologram governed the exact placement of each piece, including the drill holes. Fologram is unique in that it allows users to directly engage with making across the physical/digital divide. This technology enabled the team to move freely, whilst skillfully navigating and visualizing each point exactly, via a direct overlay of digital elements.

New Ways of Seeing

For Design Robotics, UAP, and Woods Bagot the entire process proved to be an exciting exploration into new ways of seeing. The application of AR and VR transported the time-consuming documentation process off the paper and onto the workshop floor. According to UAP’s experienced technical designer, Luke:
Traditionally we’d measure and mark these points using a series of workshop drawings. The advantage of this headset is we don’t need to create this time-consuming document. The headset does away with this process entirely. The ability to see virtually what you are making has huge benefits, and this technology will only get better and easier to use.
Luke also explained how it took roughly 6 hours to identify and directly mark out each connection point for the 450 rods. Normally, without the benefit of Fologram and HoloLens, this would have involved a lengthy back-and-forth process, taking approximately 3 days to complete. This left time for the same technology to be used in assessing aesthetic quality, which involved an organized system of iterative design changes and improvements throughout fabrication.

The view from inside the HoloLens

All those involved in the project were positive about their user experience and the outcome. For those directly involved in fabrication, incorporating advanced manufacturing technologies offered greater control and resulted in a heightened-level of calibrated precision.

UAP's team refining The Canopy
The Future of Manufacturing

This project heralds a long-term commitment to the use of AR and VR in the design and fabrication workflows. Through the Innovative Manufacturing Cooperative Research Centre (IMCRC), Design Robotics and UAP are collaborating to present a range of new possibilities. The goal is simple – to design for human intelligence and optimize the relationship between people and machines.
Making headway in the design process and pushing the boundaries in industrial robotics is a move to empower people. Navigating the increasing complexity of manufacturing inevitably supports human experience and enhances skills acquisition. At its heart, this approach celebrates the best of what robots and machines can achieve – problem-solving, and the best of what humans can do – social intelligence and contextual understanding.
It is important to both Design Robotics and UAP that every artist is an integral partner in technological experimentation, in order to inform creative concepts, design thinking, and enhanced workflows. In turn, this enables UAP’s craft makers to fulfill their creative potential resulting in dedicated skills acquisition. Ultimately, AR and VR are not used to initiate a race between robots and humans, but instead, they foster a relay in which the baton is passed from one to the other until the finish line is in sight.
 
 
 

Categories
Learn

REVIEW | ARCHITECTURAL ROBOTICS

Over the past 15 years, researchers in architecture and construction have been exploring the possibilities of employing industrial robotic arms (IRA) to help create new kinds of architectural forms. There is now a wealth of research in this area that manufacturers can draw upon to inform advanced manufacturing processes, due to the power that they entail in the direct path from digital design to fabrication. For architects, designers and construction managers, this research also points the way to new design possibilities.
In the scope of this training material, examples from current architectural and design research are explored. Recent publications from ROBArchCuminCAD and prominent universities were analysed to identify key design methodologies. The key findings of the literature review show that there is a need for a paradigm shift in the way fabrication is thought, as the design methods used in the early exploratory stages directly correlates with the way the industrial robots function and manufacture.
Carving and 3D Printing IRA's, image courtesy of UAP.
With the use of IRAs in architecture, designers have the possibility to fabricate their designs directly from the parametric digital design tools that they use. This direct connection between design and fabrication creates a fundamental shift in the way we perceive design, as architects. Suddenly, we are in control of the whole process of making; from material behaviour to structural rigidity, from material optimization to cost effectiveness, from sustainability to innovative techniques. Similar to the idea of sketching, the making process becomes more iterative, fluid and directly connected to our minds. It is also more playful and unique to our personal experiences (erlebnis).
Some of the design methodologies that arise from the exploration of IRA’s usage in architectural fabrications can be named as drawing, folding, 3D printing, deforming, stacking, weaving and carving. One might understand that each one of these methodologies are related to words of action, as they entail making in their existence. Most of the examples that are discussed in this section are pioneering exemplars that open up novel ways of making. Still at their early stages of exploration, these exemplars will change the way of architectural fabrication.

3D Printing

3D Printing technologies have been available to architects since the early 90’s, however, they are confined with the dimensions, the limitations and the available materials of the 3D Printers. With the use of IRAs, the possibilities of printing bigger and customised solutions became possible. Depending on the material used for printing, the outcomes could be real-time constructed structures without curing / assembling times. Also explorations into customised materials with sustainability considerations can be tested. Materials like recycled plastics, acrylic, nylon, resin, wood metal, rubber, salt, cement, sand, etc… can be used for 3D printing possibilities.
In the work of “Aggregation” by ICD, the concept of 3D printing is explored through a different kind of material compared to current 3D printing material. Instead of using a filament, this project uses a 3D elemental piece to be poured by an IRA. Through gravitational force, the material entangles to one another through a natural flow and compresses naturally. This process creates new ways of constructing through an aggregation process. There are no binders, no curing times. Allowing structure to emerge instantaneously through the process of pouring.
In the work of “Robotic Welding the Bridge” by MX3D, IRAs demonstrate the ability to 3D print in stainless steel. 3D printing is achieved by welding IREs. Welded forms have a lot of flexibility in relation to creating complex geometries and force distribution. More explorations with fluid materials that are more similar to 3D printers as we know it are the works of Roland SnooksEmerging Objects and AI Build.

Deforming

Deforming a rigid material using material’s physical properties creates novel uses of that material. In architecture, deforming through vacuum forming has been used for creating repetitive elements through metal and plastic sheets moulds in many design projects. However, the idea of mass-customisation through parametric design suggests novel techniques for fabrication with this technique. As, custom designed panels require custom moulds, cost and precision becomes the main concerns for manufacturers. In order for custom moulds to be sustainable and economically feasible, manufacturing speed, recycling and accuracy should be taken into consideration. With their speed and precision, IRAs can apply adequate force to create exact deformations in metal sheets to achieve high quality results. [Kalo, A. & Newsum, M. J. (2014)]

Folding

The folding techniques used in architecture are mainly influenced by the folding techniques from Japanese Origami art. In the Origami technique, a planar paper surface is folded into 3dimensional geometries without losing material. The folds create rigidity in the material in a way that it is possible to resist gravitational forces as well as lateral forces. Similar ideas of Origami are tested and prototyped in the manufacturing process of Robofold. In the explorations of Robofold, laser cut aluminium plates that have scores of folding as well as joint holes, which are folded by three IREs applying equal forces.

Stacking

Stacking materials is a repetitive and tiring process that requires optimisation, attention, precision and equal force distribution. The significance in the process of stacking is in the overall algorithm that defines the rules of stacking in relation to each piece with one another, that requires real-time feedback loops, using vision sensors. In architectural fabrication, stacking materials by using pick and place functions in IRAs is commonly used. Pioneering research group, Gramazio Kohler explore the potential of such technologies through onsite robotic construction.

Mobile Robotic Brickwork from robotsinarchitecture on Vimeo
Weaving

Inherent in our nomadic existence, weaving has been an integral part of architectural fabrication. Roof structures, partition elements have been woven using various materials since centuries. However, today with the use of IRAs in digital design to fabrication, architects realized a new potential in this way of fabrication. In the works of ICD, New materials such as carbon fibre have initiated unforeseen potentials in the making of spaces, using biomimetic approaches to design. Parasitic structures as well as self-standing
lightweight structures enable fast and clean on-site fabrication of lightweight structures. Either constructed as elemental units, or parasitical structures that are weaved into localities, weaved elements create their own structural integrity, allowing adequate weight distribution and optimised material use. Some weaved structures allow human-robot collaboration by humans assembling infrastructures for robots to weave, or humans assembling robotically weaved elements into whole structures.

 ICD ITKE Research Pavilion 2013-14 from itke on Vimeo
Carving

Carving has entered the world of architectural fabrication with 3 axis CNC’s. The flexibility of having a 6 axis IRA, allows multiple directional carving into materials. With the use of IRAs, using different end effectors, architects carve into materials with hotwire cutters as well as various milling tools. Using a hotwire cutter, QUT Design Robotics team has collaborated with UQ School of Architecture to create ROBOBLOX; a web to fabrication design process to cut custom designed patterns into sculptural friezes. Manufacturing company UAP uses robotic milling in creating custom mould patterns for bronze casting of bespoke artworks.

ROBOBLOX, Design Robotics & UQ School of Architecture
The Future of Manufacturing

With support from the Innovative Manufacturing Cooperative Research Centre (IMCRC), Design Robotics is collaborating to present a range of new fabrication and vision systems solutions. The goal is simple – to design for human intelligence and optimize the relationship between people and machines.
Pushing the limits of industrial robotics is a move to empower people. Navigating the increasing complexity of manufacturing inevitably supports human experience and enhances skills acquisition. At its heart, this approach celebrates the best of what robots and machines can achieve – problem-solving, and the best of what humans can do – social intelligence and contextual understanding.

Resources
Categories
Learn

ADVANCED MANUFACTURING | TRANSFORMING WORKPLACE COMPETENCY

The full benefit of integrating advanced Industry 4.0 technologies into manufacturing processes requires the right human skills and a motivated workforce. While the new manufacturing paradigm is projected to create a whole new range of possibilities, it depends upon a workforce transformation that is one of the main challenges of Industry 4.0.
Increasing automation will force a shift in the employee skill-set. Initially some low-skill jobs will be lost, particularly those with repetitive tasks, others however, will be reconfigured. In the long-term, employment is projected to rise; and people with skills overlapping the domains of engineering, IT and software development will benefit most. Leaders need to consider the changing nature of work, and organisations need to provide environments that expand the skill-set and capabilities of existing employees through continuous, on-the-job education and training. An ongoing investment in upskilling the workforce will help address challenges and fears about job losses through automation.

Key Recommendations
  • Identify a Project Champion Develop an employee-led transformation culture and support those with the energy and enthusiasm to drive projects forward
  • Collaborate with Your Workforce Identify opportunities and reconfigure processes in partnership with your employees
  • Develop and Support a Culture of Life-long Learning Provide workplace education, training, and opportunities to experiment
  • Acknowledge and Document Failures Create the space to fail and learn
There’s no winning and losing, only winning and learning

 
Activity: Mapping advanced manufacturing opportunities over existing organisational workflow.

Activity map advanced manufacturing opportunities over existing workflows

A foundation for successful adoption and application of advanced technology can be achieved through early engagement with employees. Collaborative activities can investigate current organisational workflows to identify opportunities for the use of advanced manufacturing equipment. For example, points in the workflow that are resource intensive, time consuming, hazardous, or difficult to achieve with existing methods. They could also be processes where advanced manufacturing equipment would expand the capabilities of the organisation. These approaches allow organisations to identify what technology should be adopted and how. It is important to consider if there is enough work [for the technology] in the process and what resources would be required for implementation to be successful. Having employees as key participants in this transformation is critical as their expert, and often tacit knowledge informs what advanced manufacturing technologies would be appropriate and useful uptake into their processes.
By adopting a collaborative approach, organisations provide their employees with opportunities to learn more about the capabilities of advanced manufacturing technologies and how they can allow for transformative approaches within their workflow. This kind of engagement and communication increases valuable cross-department awareness and opens up the opportunity for employee-led transformation – a key driver of successful industrial transformation.
As the transformation continues, this internal value should be supported and built upon with long-term strategies that include ongoing training and education. To accommodate different generations, skill-levels and learning styles, a variety of training approaches should be considered – formal versus informal, onsite versus offsite, for example. Collaborative activities such as the workflow mapping discussed above, are approachable methods that can be organised in-house or supported through partnerships with research institutions or government vocational education training. If opportunity allows, it is recommended that organisations consider both practice and applied use; ‘time on the tool’, for exploration and experimentation with the technology, understanding its limitations and learning from failures, will increase employee self-efficacy; actually applying the technology to projects will demonstrate confidence in the workforce.

The Future of Manufacturing

With support from the Innovative Manufacturing Cooperative Research Centre (IMCRC), Design Robotics is collaborating to present a range of new fabrication and vision systems solutions. The goal is simple – to design for human intelligence and optimize the relationship between people and machines.
Pushing the limits of industrial robotics is a move to empower people. Navigating the increasing complexity of manufacturing inevitably supports human experience and enhances skills acquisition. At its heart, this approach celebrates the best of what robots and machines can achieve – problem-solving, and the best of what humans can do – social intelligence and contextual understanding.

Resources
Collaborative Tools
Categories
Learn

REVIEW | ROBOT CALIBRATION

UR10 Robot with burnishing tool

Robotic arms are a series of joints linked together in a kinematic chain

Calibration is critical in the field of robotics as it allows for enhancement of a robot’s accuracy through software rather than changing mechanical components. This article will go over some basic concepts involved in end effector calibration otherwise known as adding a new tool centre point on a robotic arm. Most industrial manipulators have six degrees of freedom or six joints (see Figures 1 & 2). The starting link always begins where the robot is physically mounted. These joints can be described as having a parent-child relationship. The hierarchy of these joints is important as the child joint is always defined in reference to, and therefore dependent on, the parent joint. The last link on the kinematic chain is typically referred to as the end effector which has a tool centre point (TCP). It is this TCP point that the user will manipulate in 3D-space, if in cartesian control. To make robotic arms useful, various end effectors (i.e. grippers, 3D sensors, rotating tools) can be attached in order to complete various operations. As a result, defining a new TCP is necessary to utilise the mounted tools.

Figure1: Simple drawing of a robotic arm and joints
Figure 1: Simple drawing of a robotic arm and joints

Figure 2: Example of joints on an industrial robotic arm

Figure 2: Example of joints on an industrial robotic arm

There are several ways to add a new TCP point on a robotic arm and most robotic arm manufacturers will provide their own methodology. Ultimately, all these methods involve measuring the pose of your new end effector in 3D-space, with respect to the last joint of the manipulator. The key feature to make note of when adding a new TCP, is the parent joint’s coordinate frame (see Figure 3).
Figure 3: Example of TCP point being defined from the last flange joint on a KUKA

Figure 3: Example of TCP point being defined from the last flange joint on a KUKA

To define a new TCP, the position and orientation is required to make up the pose. The position aspect can be gathered from physically measuring it out. It’s important to know the coordinate frame as this determines whether elements are positive or negative, and which axis to measure along. Depending on the complexity of the end effector, it can be quite difficult to measure the TCP point. If there is an accurate 3D model, the position information can be gathered from this, but ultimately the accuracy in robotic arm control is dependent on how close the most is representative in real life.
The orientation is crucial for cartesian control. The controller is given target poses and it is ultimately trying to match the robot’s end-effector coordinate frame to the target’s. If the orientation of the TCP is ill-defined, it can cause large sweeping motions. There are four key things to remember when defining a new orientation:

  1. Orientations are simply defining a new XYZ coordinate frame (see Figure 4A)
  2. All XYZ coordinate frames have to abide by a right-hand rule to be valid (see Figure 4B – this rule defines the order XYZ axes can exist, thumb is X, pointer is Y and middle is Z axis) and follow conventions to determine positive rotation (figure 4C)
  3. The order of rotations also impacts the ending result of a coordinate frame.
  4. All orientations, while maybe named or ordered differently, will be defined using either euler angles (x,y,z) or quaternions (x, y, z, w) with the units being either in degrees or radian.

Figure 4: (A) A 3D coordinate frame in cartesian space. (B) The right hand rule all frames will abide by. (C) The thumb represents the axis, and the curled fingers represent convention for positive rotation.

Figure 4A: (A) A 3D coordinate frame in cartesian space. (B) The right-hand rule all frames will abide by. (C) The thumb represents the axis, and the curled fingers represent convention for positive rotation.
Figure 4: Example of orientations defined in KUKA manipulators. ABC angles represent ZYX coordinate frames (note, reversed and named differently from conventional frames).
Figure 4B: Example of orientations defined in KUKA manipulators. ABC angles represent ZYX coordinate frames (note, reversed and named differently from conventional frames).

Figure 5: Coordinate frame showing the separated axis rotations

Figure 5: Coordinate frame showing the separated axis rotations

This article touched on the basic concepts involved in calibrating a new end effector on any kind of robotic arm. It is important to have an understanding of the underlying theory that underpins how robotic arms are structured, but the best resource to understand your robotic arm will be the manufacturer’s manual.

The Future of Manufacturing

With support from the Innovative Manufacturing Cooperative Research Centre (IMCRC), Design Robotics is collaborating to present a range of new fabrication and vision systems solutions. The goal is simple – to design for human intelligence and optimize the relationship between people and machines.
Pushing the limits of industrial robotics is a move to empower people. Navigating the increasing complexity of manufacturing inevitably supports human experience and enhances skills acquisition. At its heart, this approach celebrates the best of what robots and machines can achieve – problem-solving, and the best of what humans can do – social intelligence and contextual understanding.

Resources
Categories
Learn

LINISHING | EXPLORING COLLABORATIVE ROBOTICS

Contemporary industrial production is no longer simply about reducing ergonomic and safety risks, or improving speed and productivity, more-and-more it is driven by decreasing lead-times and increasing levels of customisation. This approach requires flexible and adaptive production units, including a combination of human and robot capabilities. Here, we explore the role collaborative robots play in the linishing process.
Assistive Robots and machines that work alongside skilled human experts are key enabling technologies in advanced manufacturing and the factories of the future. Safety is a primary concern, but further work is needed to extend the application of robotic technologies across manufacturing environments. Rather than autonomous, robotic systems designed to replace human workers, new systems will work in areas requiring a high level of integration between human and robotic competencies.
Collaborative robots are robots designed to allow humans and robots to work together without the need for physical cells to separate and protect humans from the robot. These force-limited robots have built-in sensors that monitor and detect the presence of objects such as people by detecting impact and external forces. These robots stop moving when they impact with something else. They are also designed to have rounded edges and smoother finishes so that their impact creates minimal damage or harm to others.

Human and robot linishing collaboration

The linishing video of a UAP worker collaborating with a UR10 demonstrates the capability of a human and robot working together to achieve a time consuming and large scale task that would be difficult for a human to complete on their own.

Technologies such as VR and AR can help people interact with robots
Technologies such as VR and AR can help people interact with robots

Existing industrial robot installations are subject to strict international standards governing the design, installation, and integration of robots and robot systems (ISO 10218 1&2 – 2011).
There are four primary HRI safety methods. Methods often separate the robot and operator with physical or sensor-based barriers. Given these barriers are somewhat eliminated in collaborative workspaces the ISO standards have been updated to specifically address the integration of collaborative systems (ISO/TS 15066:2016). Collaborative robots employed to work in industrial operations must fulfil at least one of four modes. Different modes align with different applications of human/robot collaboration.

Digital Transformation

Advanced digital technologies have already transformed banking, communications, and media landscapes. Representing one-sixth of the global economy the manufacturing sector poses just as much potential for disruption.
Lower costs and improved robot capability are decreasing barriers to entry and increasing global competitiveness. From agriculture to transportation, SMEs are exploring robotic applications in areas not previously considered possible. Accordingly, 52% of Australian CEOs are exploring the possible benefits of humans and robots working together.

Core Considerations
  • End Effectors are the tools that can be attached to a robotic arm such
    as a gripper, a milling head, a spindle etc.
  • Payload is the weight that a robotic arm can carry. The payload needs to
    consider the weight of the end effector and anything it would carry or
    force it would apply.
  • Reach is the extension length of the robotic arm from its wrist to its base.
  • Maximum Speed is the fastest speed that the end effector can move.
  • Degrees of Freedom refers to the number of axes that the robotic arm can
    move around. The more degrees of freedom a robotic arm has means it has
    increased levels of dexterity.
  • Repeatability is the ability for the robotic arm to accurately repeat
    the same motion.
  • Price, Weight and Size are other factors that need to be considered when
    taking into account the different collaborative robots on the market.

Collaborative Robots that are force limited achieve their safe human/robot relationships through four different approaches. These different approaches classify the collaborative robots under 4 different types including:

  • Inherently Safe robots have many sensors and a low amount of force (a
    payload under 1kg) so even if they collided with a person they would not
    cause harm.
  • Skin Sensing robots use tactile sensing technology to sense impact
    causing them to stop automatically at specific levels.
  • Force Sensor Base robots have a force-sensor at their base which
    measures and detects different forces placed onto the robot.
  • Joint Sensing robots use their joints to detect and monitor forces that
    are applied to the robot’s body. This is the most common type of
    collaborative robot on the market and the one that the design robotics team
    at QUT uses for their research.

For more details and examples of different kinds of collaborative robotic arms made from a range of manufacturers refer to the comprehensive Robotiq Collaborative Robot eBook https://blog.robotiq.com/collaborative-robot-ebook.

Manufacturing Advantages
  • Improved cost-effectiveness in complex, creative tasks supporting approaches that let humans and robots collaborate effectively
  • Increased efficiency supporting co-located human/robot collaboration is expected to lead to significant time and cost savings
  • More flexibility Human/robot collaboration approaches allow for on-the-fly (or in-process) and direct designer input facilitating the creation of unique bespoke products for clients
  • Improved safety: Augmented Reality combined with human/robot collaboration enables increased scope for co-location of humans and robots supported by advanced safety mechanisms.
Manufacturing Limitations

Currently, the majority of collaborative robotic arms on the market have payloads under 16kgs which helps them be safer and easier to use in a range of applications. However, in many manufacturing tasks, there is a need for high levels of force to be applied by robotic arms to effectively achieve tasks such as metal polishing or grinding. Therefore one of the biggest limitations that collaborative robots face within manufacturing environments is their low levels of force that they can apply to work in industrial settings. Another limitation is their size with reach ranges typically under a meter, thus making it difficult for these types of robots to work on large or complex forms.
There are many ways that this can be overcome and will require each user to consider the pros and cons of the robotic technology available to them. As with many manufacturing processes, there is a workflow to consider which involves different skill sets, tools, and applications. Therefore some manufacturing settings may find they require a combination of traditional tools with industrial robots to conduct large high-force tasks which are then finished off by humans and collaborative robots to do the finer parts of the process. As with any process, the combination of tools and approaches will depend on several factors.\

The Future of Manufacturing

With support from the Innovative Manufacturing Cooperative Research Centre (IMCRC), Design Robotics is collaborating to present a range of new fabrication and vision systems solutions. The goal is simple – to design for human intelligence and optimize the relationship between people and machines.
Pushing the limits of industrial robotics is a move to empower people. Navigating the increasing complexity of manufacturing inevitably supports human experience and enhances skills acquisition. At its heart, this approach celebrates the best of what robots and machines can achieve – problem-solving, and the best of what humans can do – social intelligence and contextual understanding.

Resources
Categories
Learn

AR & VR | SAFE, PRECISE, & ACCESSIBLE

Alongside 3D printing and robotics, Augmented and Virtual Reality (AR & VR) are emerging as key Industry 4.0 technologies. Thanks in part to cost reduction and advances in consumer-level equipment, AR & VR applications are becoming well-accepted in product development and manufacturing environments. The novel interaction techniques, including multimodal interfaces and gesture control devices, support traditional manufacturing processes by improving safety, flexibility and precision.
Modelling a facade element using virtual reality (image courtesy UAP)

Virtual Reality (VR) Solutions

Computer-generated 3D environments that respond in real-time to human gestures usually experienced through immersive head-mounted displays. Handheld controllers are used for hand and body tracking and may provide haptic feedback.
In industrial applications, VR can be used as a tool to visualise how different hardware and software can collaborate with human and robot systems, in programming, maintenance and error handling. This is beneficial for understanding spatial relationships in assembly processes, as well as aspects of ergonomics and “viewability” critical for certain processes of product assembly and repair.
VR can also facilitate interactive development and decision making within product design teams. Teams can review the product at scale in a collaborative environment, exploring any limitations in the design or assembly.

Augmented Reality (AR) Solutions

AR is an environment where computer-generated 3D objects, text or graphics are overlayed on the realworld view. In industrial prototyping these techniques can be used to augment a virtual robot or machine into a real-world space.
AR environments allow for safe and precise manipulation of tools in industrial applications– particularly where other methods are not feasible – and can provide context-awareness to increase levels of trust in systems. Recent work is exploring the possibilities of free-form modelling and flow-sculpting. The intent of these developments is to support more natural human gestures in conceptual design. The technology may sidestep the level of skill required to work with CAD technologies, as well as open up the possibility of cross-department workflows within organisations.

Challenges & Considerations

AR & VR systems can still be complex and expensive to set up. In some cases, the virtual environment may be time-consuming to create, increasing human labour and causing it to be an expensive alternative to traditional modelling and prototyping. Despite increased accessibility of commercially available equipment, the interface also has limitations – gesture recognition can be unreliable, the head-mounted hardware uncomfortable, and extended use has been known to cause simulator sickness. Interestingly though, successful simulation in VR is supported by a user’s real-world knowledge of the task. When used as a training tool, VR has had a positive impact in a number of industries, from manufacturing to medical surgery. VR/AR technologies have also been successful in reducing the risk of costs associated with training, particularly in environments that are complex, hazardous, or difficult to access.

Adding Value to Design & Engineering Outcomes

AR & VR can add value to design and engineering outcomes by:

  • Effectively communicating internally across departments, and externally with clients and contractors.
  • Providing more clarity of production requirements and processes for the manufacturing and construction team.
  • Drastically reducing or helping eliminate the amount of documentation which is required for assembly of structures.
  • Establishing more efficient iterative design changes, more effective collaboration across disciplines and departments, and faster design process.
  • AR can also help in Visualising the scale of a structure and its relationship to a site through the use of AR.
  • Assisting in assessing the aesthetic quality of the work.
  • Identifying errors earlier in the production.
  • Evaluating and assessing compliance of Australian standards.
AR & VR Workflow
  • Map out opportunities and potential use-cases with employees
  • Identify a project champion within your organisation to lead the projects
  • Audit current in-house workforce skills
  • Explore potential technology – including options for ongoing technical support and training, some examples:
  • Set aside a physical space (for AR)
  • And provide training and practice time! – See our brief on workforce considerations.
The Future of Manufacturing

With support from the Innovative Manufacturing Cooperative Research Centre (IMCRC), Design Robotics is collaborating to present a range of new fabrication and vision systems solutions. The goal is simple – to design for human intelligence and optimize the relationship between people and machines.
Pushing the limits of industrial robotics is a move to empower people. Navigating the increasing complexity of manufacturing inevitably supports human experience and enhances skills acquisition. At its heart, this approach celebrates the best of what robots and machines can achieve – problem-solving, and the best of what humans can do – social intelligence and contextual understanding.

Resources
Categories
Learn

FORM-FINDING STRATEGIES | ENHANCING ROBOTIC FUNCTION

Over the past 15 years, researchers in architecture and construction have been exploring the possibilities of employing industrial robotics to help create new kinds of architectural forms. There is now a wealth of research in this area, which manufacturers can draw upon to inform new robotic processes, due to the power that they entail in the direct path from digital design to fabrication. For architects, designers and construction managers, this research also points the way to new design possibilities.
In the scope of this training material, examples from current architectural and design research are explored. Recent publications from ROBArch, CuminCAD and prominent universities were analysed to identify key hardware requirements. The key findings of the literature review show that custom end effectors, direct human interaction with technology and vision embedded systems are necessary to correspond to the needs of manufacturing bespoke designs. The results of this research hints that there is a need for a paradigm shift in the way fabrication is thought, as the design methods used in the early exploratory stages directly correlates with the way the industrial robots function and manufacture.

Carving End Effector, image courtesy of UAP
Carving End Effector, image courtesy of UAP

End-Effectors

IRAs respond to numerous tasks by utilising different end effectors (EEs) by tools. EEs are gateways to manipulate various materials as well as exploring numerous ways of systems of thinking. The possibility of attaching any kind of a hand tool to an IRA creates immense opportunities and unique ways of exploring material properties and conditions. In that manner, architects have attached; pens, heat guns, extruders, grippers, hot-wire cutters, grinders, drills, chisels, suction heads, welders, etc… as end effectors to the IRAs.
When dealing with custom EEs, the main concerns are to be aware of the tool centre point (TCP) that is the gravitational centre and the payload of the proposed EE. The EEs can be modelled in a 3D modelling software with the tool base at 0, 0, 0 point, where most software use as an import point for the simulation of the kinematics model of the IRA. The weight and the location of the EE effects the movement of the IRA by means of vibration and locating the workspace and the material that is worked on.
Therefore, they should be calibrated in relation to these parameters. Calibration of an IRA is important to achieve precision and accuracy in the outcomes of the manufactured models. Calibrations are done through 3Points Calibration (XYZ) method or 4-point calibration method.

Sensors

Sensors are the receptors of the IRA. Sensors are used:

  • to contextualize a robot within an environment (Gramazio, Kohler),
  • to use the IRAs in their full capacity,
  • to sense the different material qualities,
  • to create engagement possibilities with the materials,
  • to allow safe human-robot collaboration.

Touch sensors, vision scanners, microphones, force control sensors, motion tracking systems are used to gather information from IRAs surroundings and materials. The gathered information through the sensors are fed into the robot control systems to create feedback loops to allow real-time manipulation of the IRAs movements. Such feedback loops are necessary to have greater control over the IRA as well as getting accurate or desirable outcomes.

Tracks, Turntables and Work Bases

Most of the IRAs used in architectural manufacturing are 6-axis. In some cases, where more than 6 axis is necessary, the IRA is set up on a moving track, or the worktable is a turntable. This provides flexibility in the movement of the IRA. In case of the IRA used as a tool in a construction field, it can be mobile allowing autonomous vehicle properties to be applied. By scanning its surroundings, the IRA can adjust its movements in relation to obstacles, as well as follow directives to complete predefined spatial tasks.

The Future of Manufacturing

With support from the Innovative Manufacturing Cooperative Research Centre (IMCRC), Design Robotics is collaborating to present a range of new fabrication and vision systems solutions. The goal is simple – to design for human intelligence and optimize the relationship between people and machines.
Pushing the limits of industrial robotics is a move to empower people. Navigating the increasing complexity of manufacturing inevitably supports human experience and enhances skills acquisition. At its heart, this approach celebrates the best of what robots and machines can achieve – problem-solving, and the best of what humans can do – social intelligence and contextual understanding.