Categories
Learn

LINISHING | EXPLORING COLLABORATIVE ROBOTICS

Contemporary industrial production is no longer simply about reducing ergonomic and safety risks, or improving speed and productivity, more-and-more it is driven by decreasing lead-times and increasing levels of customisation. This approach requires flexible and adaptive production units, including a combination of human and robot capabilities. Here, we explore the role collaborative robots play in the linishing process.
Assistive Robots and machines that work alongside skilled human experts are key enabling technologies in advanced manufacturing and the factories of the future. Safety is a primary concern, but further work is needed to extend the application of robotic technologies across manufacturing environments. Rather than autonomous, robotic systems designed to replace human workers, new systems will work in areas requiring a high level of integration between human and robotic competencies.
Collaborative robots are robots designed to allow humans and robots to work together without the need for physical cells to separate and protect humans from the robot. These force-limited robots have built-in sensors that monitor and detect the presence of objects such as people by detecting impact and external forces. These robots stop moving when they impact with something else. They are also designed to have rounded edges and smoother finishes so that their impact creates minimal damage or harm to others.

Human and robot linishing collaboration

The linishing video of a UAP worker collaborating with a UR10 demonstrates the capability of a human and robot working together to achieve a time consuming and large scale task that would be difficult for a human to complete on their own.

Technologies such as VR and AR can help people interact with robots
Technologies such as VR and AR can help people interact with robots

Existing industrial robot installations are subject to strict international standards governing the design, installation, and integration of robots and robot systems (ISO 10218 1&2 – 2011).
There are four primary HRI safety methods. Methods often separate the robot and operator with physical or sensor-based barriers. Given these barriers are somewhat eliminated in collaborative workspaces the ISO standards have been updated to specifically address the integration of collaborative systems (ISO/TS 15066:2016). Collaborative robots employed to work in industrial operations must fulfil at least one of four modes. Different modes align with different applications of human/robot collaboration.

Digital Transformation

Advanced digital technologies have already transformed banking, communications, and media landscapes. Representing one-sixth of the global economy the manufacturing sector poses just as much potential for disruption.
Lower costs and improved robot capability are decreasing barriers to entry and increasing global competitiveness. From agriculture to transportation, SMEs are exploring robotic applications in areas not previously considered possible. Accordingly, 52% of Australian CEOs are exploring the possible benefits of humans and robots working together.

Core Considerations
  • End Effectors are the tools that can be attached to a robotic arm such
    as a gripper, a milling head, a spindle etc.
  • Payload is the weight that a robotic arm can carry. The payload needs to
    consider the weight of the end effector and anything it would carry or
    force it would apply.
  • Reach is the extension length of the robotic arm from its wrist to its base.
  • Maximum Speed is the fastest speed that the end effector can move.
  • Degrees of Freedom refers to the number of axes that the robotic arm can
    move around. The more degrees of freedom a robotic arm has means it has
    increased levels of dexterity.
  • Repeatability is the ability for the robotic arm to accurately repeat
    the same motion.
  • Price, Weight and Size are other factors that need to be considered when
    taking into account the different collaborative robots on the market.

Collaborative Robots that are force limited achieve their safe human/robot relationships through four different approaches. These different approaches classify the collaborative robots under 4 different types including:

  • Inherently Safe robots have many sensors and a low amount of force (a
    payload under 1kg) so even if they collided with a person they would not
    cause harm.
  • Skin Sensing robots use tactile sensing technology to sense impact
    causing them to stop automatically at specific levels.
  • Force Sensor Base robots have a force-sensor at their base which
    measures and detects different forces placed onto the robot.
  • Joint Sensing robots use their joints to detect and monitor forces that
    are applied to the robot’s body. This is the most common type of
    collaborative robot on the market and the one that the design robotics team
    at QUT uses for their research.

For more details and examples of different kinds of collaborative robotic arms made from a range of manufacturers refer to the comprehensive Robotiq Collaborative Robot eBook https://blog.robotiq.com/collaborative-robot-ebook.

Manufacturing Advantages
  • Improved cost-effectiveness in complex, creative tasks supporting approaches that let humans and robots collaborate effectively
  • Increased efficiency supporting co-located human/robot collaboration is expected to lead to significant time and cost savings
  • More flexibility Human/robot collaboration approaches allow for on-the-fly (or in-process) and direct designer input facilitating the creation of unique bespoke products for clients
  • Improved safety: Augmented Reality combined with human/robot collaboration enables increased scope for co-location of humans and robots supported by advanced safety mechanisms.
Manufacturing Limitations

Currently, the majority of collaborative robotic arms on the market have payloads under 16kgs which helps them be safer and easier to use in a range of applications. However, in many manufacturing tasks, there is a need for high levels of force to be applied by robotic arms to effectively achieve tasks such as metal polishing or grinding. Therefore one of the biggest limitations that collaborative robots face within manufacturing environments is their low levels of force that they can apply to work in industrial settings. Another limitation is their size with reach ranges typically under a meter, thus making it difficult for these types of robots to work on large or complex forms.
There are many ways that this can be overcome and will require each user to consider the pros and cons of the robotic technology available to them. As with many manufacturing processes, there is a workflow to consider which involves different skill sets, tools, and applications. Therefore some manufacturing settings may find they require a combination of traditional tools with industrial robots to conduct large high-force tasks which are then finished off by humans and collaborative robots to do the finer parts of the process. As with any process, the combination of tools and approaches will depend on several factors.\

The Future of Manufacturing

With support from the Innovative Manufacturing Cooperative Research Centre (IMCRC), Design Robotics is collaborating to present a range of new fabrication and vision systems solutions. The goal is simple – to design for human intelligence and optimize the relationship between people and machines.
Pushing the limits of industrial robotics is a move to empower people. Navigating the increasing complexity of manufacturing inevitably supports human experience and enhances skills acquisition. At its heart, this approach celebrates the best of what robots and machines can achieve – problem-solving, and the best of what humans can do – social intelligence and contextual understanding.

Resources
Categories
Learn

AR & VR | SAFE, PRECISE, & ACCESSIBLE

Alongside 3D printing and robotics, Augmented and Virtual Reality (AR & VR) are emerging as key Industry 4.0 technologies. Thanks in part to cost reduction and advances in consumer-level equipment, AR & VR applications are becoming well-accepted in product development and manufacturing environments. The novel interaction techniques, including multimodal interfaces and gesture control devices, support traditional manufacturing processes by improving safety, flexibility and precision.
Modelling a facade element using virtual reality (image courtesy UAP)

Virtual Reality (VR) Solutions

Computer-generated 3D environments that respond in real-time to human gestures usually experienced through immersive head-mounted displays. Handheld controllers are used for hand and body tracking and may provide haptic feedback.
In industrial applications, VR can be used as a tool to visualise how different hardware and software can collaborate with human and robot systems, in programming, maintenance and error handling. This is beneficial for understanding spatial relationships in assembly processes, as well as aspects of ergonomics and “viewability” critical for certain processes of product assembly and repair.
VR can also facilitate interactive development and decision making within product design teams. Teams can review the product at scale in a collaborative environment, exploring any limitations in the design or assembly.

Augmented Reality (AR) Solutions

AR is an environment where computer-generated 3D objects, text or graphics are overlayed on the realworld view. In industrial prototyping these techniques can be used to augment a virtual robot or machine into a real-world space.
AR environments allow for safe and precise manipulation of tools in industrial applications– particularly where other methods are not feasible – and can provide context-awareness to increase levels of trust in systems. Recent work is exploring the possibilities of free-form modelling and flow-sculpting. The intent of these developments is to support more natural human gestures in conceptual design. The technology may sidestep the level of skill required to work with CAD technologies, as well as open up the possibility of cross-department workflows within organisations.

Challenges & Considerations

AR & VR systems can still be complex and expensive to set up. In some cases, the virtual environment may be time-consuming to create, increasing human labour and causing it to be an expensive alternative to traditional modelling and prototyping. Despite increased accessibility of commercially available equipment, the interface also has limitations – gesture recognition can be unreliable, the head-mounted hardware uncomfortable, and extended use has been known to cause simulator sickness. Interestingly though, successful simulation in VR is supported by a user’s real-world knowledge of the task. When used as a training tool, VR has had a positive impact in a number of industries, from manufacturing to medical surgery. VR/AR technologies have also been successful in reducing the risk of costs associated with training, particularly in environments that are complex, hazardous, or difficult to access.

Adding Value to Design & Engineering Outcomes

AR & VR can add value to design and engineering outcomes by:

  • Effectively communicating internally across departments, and externally with clients and contractors.
  • Providing more clarity of production requirements and processes for the manufacturing and construction team.
  • Drastically reducing or helping eliminate the amount of documentation which is required for assembly of structures.
  • Establishing more efficient iterative design changes, more effective collaboration across disciplines and departments, and faster design process.
  • AR can also help in Visualising the scale of a structure and its relationship to a site through the use of AR.
  • Assisting in assessing the aesthetic quality of the work.
  • Identifying errors earlier in the production.
  • Evaluating and assessing compliance of Australian standards.
AR & VR Workflow
  • Map out opportunities and potential use-cases with employees
  • Identify a project champion within your organisation to lead the projects
  • Audit current in-house workforce skills
  • Explore potential technology – including options for ongoing technical support and training, some examples:
  • Set aside a physical space (for AR)
  • And provide training and practice time! – See our brief on workforce considerations.
The Future of Manufacturing

With support from the Innovative Manufacturing Cooperative Research Centre (IMCRC), Design Robotics is collaborating to present a range of new fabrication and vision systems solutions. The goal is simple – to design for human intelligence and optimize the relationship between people and machines.
Pushing the limits of industrial robotics is a move to empower people. Navigating the increasing complexity of manufacturing inevitably supports human experience and enhances skills acquisition. At its heart, this approach celebrates the best of what robots and machines can achieve – problem-solving, and the best of what humans can do – social intelligence and contextual understanding.

Resources
Categories
Learn

REVIEW | ARCHITECTURAL ROBOTICS SOFTWARE

Over the past 15 years, researchers in architecture and construction have been exploring the possibilities of employing industrial robotic equipment to help create new kinds of architectural forms. There is now a wealth of research in this area around the most effective software, particularly with regard to maximising the direct path from digital design to fabrication. For architects, designers, and construction managers, this research also reveals new form-finding strategies.
Recent publications from ROBArch, CuminCAD, and prominent universities were analysed to identify premium software resources. The key findings of the literature review show that tailored software is necessary to correspond to the needs of manufacturing bespoke designs. The results of this research hints that there is a need for a paradigm shift in the way fabrication is thought, as the design methods used in the early exploratory stages directly correlates with the way the industrial robots function and manufacture.
Some available software for architectural robotics
There are various different software packages available for controlling IRAs. However, considering direct workflows from architectural digital design to fabrication, add-ons within the parametric design plugin called Rhinoceros/Grasshopper is the most common one. Many architectural institutions and schools use KUKA PRC and Robots. KUKA PRC also serves as a hub of knowledge through their conference, workshop, website and online forum. It is also easier to find online tutorials of KUKA PRC, whereas Robots is freely available and easy to control with Grasshopper comments. It can also control all kinds of robots. On the other hand, Autodesk PowerMill Robot is most commonly used in architectural manufacturing firms. Open software packages for controlling robots are very common in robotic engineering. Software like ROS that can control robots, in general, are adapted for designers through more user-friendly interfaces. Also, free-standing software like Mind Ex Machina can connect different design platforms such as Processing, and Grasshopper.

Stand-alone Programs

The software in the following table are stand-alone programs.

Name Website Robot Brands
Mind ex Machina Link All kinds of robots
RhinoRobot Link KUKA, UR, ABB, Staubli, Yaskawa, Fanuc
PointLoader Link KUKA
PowerMill Robot Link ABB, FANUC, KUKA
ROS Link All kinds of robots
Robo.Op Link ABB

Grasshopper Plugins

The following table lists software add-ons that can be used with the parametric design software environment ‘Grasshopper’.

Name Website Robot Brands
CRANE Link Staubli
GAZEBO Link UR
HAL Link ABB, KUKA, UR
KUKA PRC Link KUKA
Mussels Link ABB robots
RAPCAM Link ABB, FANUC, KUKA
ROBOTS Link ABB, KUKA and UR
SCORPION Link UR
TACO Link ABB

 

The Future of Manufacturing

With support from the Innovative Manufacturing Cooperative Research Centre (IMCRC), Design Robotics is collaborating to present a range of new fabrication and vision systems solutions. The goal is simple – to design for human intelligence and optimize the relationship between people and machines.
Pushing the limits of industrial robotics is a move to empower people. Navigating the increasing complexity of manufacturing inevitably supports human experience and enhances skills acquisition. At its heart, this approach celebrates the best of what robots and machines can achieve – problem-solving, and the best of what humans can do – social intelligence and contextual understanding.
 

Categories
Learn

FORM-FINDING STRATEGIES | ENHANCING ROBOTIC FUNCTION

Over the past 15 years, researchers in architecture and construction have been exploring the possibilities of employing industrial robotics to help create new kinds of architectural forms. There is now a wealth of research in this area, which manufacturers can draw upon to inform new robotic processes, due to the power that they entail in the direct path from digital design to fabrication. For architects, designers and construction managers, this research also points the way to new design possibilities.
In the scope of this training material, examples from current architectural and design research are explored. Recent publications from ROBArch, CuminCAD and prominent universities were analysed to identify key hardware requirements. The key findings of the literature review show that custom end effectors, direct human interaction with technology and vision embedded systems are necessary to correspond to the needs of manufacturing bespoke designs. The results of this research hints that there is a need for a paradigm shift in the way fabrication is thought, as the design methods used in the early exploratory stages directly correlates with the way the industrial robots function and manufacture.

Carving End Effector, image courtesy of UAP
Carving End Effector, image courtesy of UAP

End-Effectors

IRAs respond to numerous tasks by utilising different end effectors (EEs) by tools. EEs are gateways to manipulate various materials as well as exploring numerous ways of systems of thinking. The possibility of attaching any kind of a hand tool to an IRA creates immense opportunities and unique ways of exploring material properties and conditions. In that manner, architects have attached; pens, heat guns, extruders, grippers, hot-wire cutters, grinders, drills, chisels, suction heads, welders, etc… as end effectors to the IRAs.
When dealing with custom EEs, the main concerns are to be aware of the tool centre point (TCP) that is the gravitational centre and the payload of the proposed EE. The EEs can be modelled in a 3D modelling software with the tool base at 0, 0, 0 point, where most software use as an import point for the simulation of the kinematics model of the IRA. The weight and the location of the EE effects the movement of the IRA by means of vibration and locating the workspace and the material that is worked on.
Therefore, they should be calibrated in relation to these parameters. Calibration of an IRA is important to achieve precision and accuracy in the outcomes of the manufactured models. Calibrations are done through 3Points Calibration (XYZ) method or 4-point calibration method.

Sensors

Sensors are the receptors of the IRA. Sensors are used:

  • to contextualize a robot within an environment (Gramazio, Kohler),
  • to use the IRAs in their full capacity,
  • to sense the different material qualities,
  • to create engagement possibilities with the materials,
  • to allow safe human-robot collaboration.

Touch sensors, vision scanners, microphones, force control sensors, motion tracking systems are used to gather information from IRAs surroundings and materials. The gathered information through the sensors are fed into the robot control systems to create feedback loops to allow real-time manipulation of the IRAs movements. Such feedback loops are necessary to have greater control over the IRA as well as getting accurate or desirable outcomes.

Tracks, Turntables and Work Bases

Most of the IRAs used in architectural manufacturing are 6-axis. In some cases, where more than 6 axis is necessary, the IRA is set up on a moving track, or the worktable is a turntable. This provides flexibility in the movement of the IRA. In case of the IRA used as a tool in a construction field, it can be mobile allowing autonomous vehicle properties to be applied. By scanning its surroundings, the IRA can adjust its movements in relation to obstacles, as well as follow directives to complete predefined spatial tasks.

The Future of Manufacturing

With support from the Innovative Manufacturing Cooperative Research Centre (IMCRC), Design Robotics is collaborating to present a range of new fabrication and vision systems solutions. The goal is simple – to design for human intelligence and optimize the relationship between people and machines.
Pushing the limits of industrial robotics is a move to empower people. Navigating the increasing complexity of manufacturing inevitably supports human experience and enhances skills acquisition. At its heart, this approach celebrates the best of what robots and machines can achieve – problem-solving, and the best of what humans can do – social intelligence and contextual understanding.

Categories
_ News Opinion

WOMEN IN STEM | ROBOTIC FUTURES

For International Women’s Day in early March 2020, members of QUT’s Design Robotics team, Dr Muge Belek Fialho Teixeira, Amelia Luu and Dr Cori Stewart, participated in panel discussions focusing on women’s careers. The following reflections on their career journeys and interest in Design Robotics were inspired by the conversations at these events.

Dr Muge Belek Fialho Teixeira

Dr Muge Belek Fialho Teixeira is a Senior Lecturer in QUT Interior Architecture. At the same time, she is a creative maker and transdisciplinary designer with specialisations in advanced manufacturing, digital fabrication, and parametric design. She is also one of the Chief Investigators of QUT’s Design Robotics project and ARM Hub. 

First job

My first job was volunteering at a music festival in Istanbul. I am originally from Istanbul, and the Istanbul Music Festival was one of the most inspiring music events in the city. My first professional job was working in an architectural office as an intern. I remember spending all the summer going through their material library, sorting and updating the dusty shelves full of various architectural materials and catalogues. There wasn’t Material ConneXion at the time, so the only way to find out about materials was to give the companies a call and ask for a postal delivery.

Career moments

I had several pivotal points in my career. The first one was my move to London and studying at the Architectural Association (AA) Design Research Laboratory. It changed my life in many ways: one, I got to meet my partner in life and work; and the other, I got to work with one of the most influential women in the history of architecture, Zaha Hadid.
The second pivotal point in my career was my move to Santa Barbara to UCSB, where I got to work in a very transdisciplinary environment. During my PhD, I spent two years in Translab researching immersive environments and acoustics, under the supervision of Markus Novak at UCSB Media Arts and Technology program. I had the opportunity to work with inspiring people such as Yutaka Makino, Haru Hyunkyung Ji, Graham Wakefield and Mark-David Hosale.
My last pivotal point is the move to Brisbane and beginning to work with the QUT Design Robotics Project.

Challenges

Juggling the work/life balance is one of the greatest challenges in our field. As a woman, if you want to become a mother, you need to have career breaks. This has a huge impact on the progress of your career, or the people’s perception of what you can or can’t do. For me, my partner is the greatest supporter to help me navigate this. He is always there for me and supports me in achieving my goals. Also, here in Australia, there are special support programs and exemptions for female academics to progress with their careers. As women, we shouldn’t give up on our dreams and seek opportunities and mentors that support us in achieving them.

Wishlist for Design Robotics

More support for women through flexible work hours; professional development support through leadership courses, mentoring, and training; allowing younger generations to be exposed to the potentials of design robotics through STEAM (Science, Technology, Engineering, Arts and Maths) workshops.

Inspirations

My biggest inspiration was Zaha Hadid. My background is in architecture, and as a profession, architecture is also a very male-dominant world. In fact, it has been affected by the #MeToo movement immensely. As an Iraqi woman, who had migrated to the UK in the early 70s, Zaha Hadid later became British and was appointed Dame Commander of the Order of the British Empire (DBE). She was the first woman to win the Pritzker prize. She was an influential and inspiring woman and I was very lucky to work with her, right after graduating from the AA.

The importance of visibility

My current research takes place in the manufacturing industry, which as you might know is a very male-dominant industry. Therefore, it is important to represent women in this industry by being present at events such as “Women in Manufacturing Breakfasts”, Women in Technology platforms, etc…
As an academic, there are many ways women are supported, especially in QUT. QUT is part of an initiative called “The Athena SWAN Accreditation Framework”, which is part of SAGE (Science in Australia Gender Equity) and supports female researchers/ academics by providing special funding, organising Women in Stem workshops, writing retreats. Currently, I receive a grant from the QUT Women in Research Grant worth $10,000 for conducting research on Robotic Clay Cutting. I believe it is important to get stronger as a woman, so that we can mentor and support younger women to be more successful.

The change we need

I believe we should support each other and grow together. In the QUT Design Robotics research group, we have amazing women and men who mentor, guide and support one another. So far, it has been an amazing environment to work in. In general, women need to put aside negative competition and support each other more. We need to know that the more we share, the better we will all get from this collective sharing environment.

Advice to younger women

Ignore prejudices on what you can do. Focus on what you want to do and what you want to learn to be the best in your field. Surround yourself with people who are supportive and positive and keep yourself away from those who are negative and self-centred.
Believe in yourself! Women are strong and empowering! Step up with your dreams!

Amelia Luu

Amelia Luu is a mechatronics engineer within QUT’s Design Robotics project, where she works with industry partner UAP, a large-scale art manufacturing company, researching how to embed robotics into their workflow. I am currently developing an autonomous system to linish cast aluminium pieces.

First job

The first job I ever had was in high school working at a little juice bar in the city. I have a vivid memory of them letting 15-year old me use a machete to slice a watermelon. It was amazing fun and a great first introduction to a working environment!
My first STEM-related job was during my Mechatronic Engineering Bachelor’s degree. I worked with a research group in QUT named Biofabrication and Tissue Morphology, a lab run by Professor Mia Woodruff. They are researching advanced manufacturing in the context of fabricating patient-specific biomedical solutions. An example of this was my final year project where I designed a photogrammetry rig to help instantaneously capture a person’s face in order to 3D print custom moulds for transparent facial mask fabrication used in burn treatments. This is the kind of work that led me to custom manufacturing in Design Robotics.

Career moments

I was always interested in science, and biology in particular, and honestly chose engineering on a whim due to my general interest in STEM topics. At the end of my first year, I came across a TED talk that made all the difference: Hugh Herr’s work in bionics. He is an Associate Professor currently leading a Biomechatronics group at MIT. In this TED talk, he presented their work that helped a dancer who had lost her leg in the Boston bombings perform again. It was this TED talk and Herr’s passion that inspired me to pursue a career that could combine science, assistive technology and engineering together.

Challenges

There are definitely challenges with being a young Asian female in a white male-dominated industry, though I believe most of these challenges are a result of their unconscious bias. Rarely will people directly admit they have less regard for me because I am a woman. Instead, the challenges typically show up in more subtle or passive aggressive ways. For instance, despite being brought on a project as the only robotics expert, my advice was never trusted, always second guessed and was only taken seriously if another man agreed with me. Another example would be when I was in a discussion with a male colleague and a client. Even though I was the one leading the discussion and facilitating the meeting, the client always answered my questions to the male colleague and never directly faced or made eye contact with me. So, it always feels like there is a constant battle for a basic level of respect.
What has helped me navigate all of this is having a network of people to talk about it with. The Design Robotics team has been great for this, as everybody is incredibly supportive and open for these difficult discussions.

Wishlist for Design Robotics

I hope that we continue working towards getting better representation across the board, and for more women in senior leadership positions. I also aspire for this industry to continue being open towards multi-disciplinary collaborations as that’s where I believe the more meaningful and higher impact projects begin and flourish.

Inspirations

All the women involved with Design Robotics are inspiring as they are all doing amazing jobs and breaking glass ceilings in their respective fields, which is wonderful to see! Another local that comes to mind is Marita Cheng; I first came across her as the founder of Robogals. She won the Young Australian of the Year award in 2012, has been recognised on various influential lists, and has done a lot in the robotics industry.

The importance of visibility

The first thing I think of is representation. Growing up, Asians were stereotypically represented as the nerd with no friends in Western media. I rarely saw an Asian woman, let alone an Asian person climbing career ladders, being CEOs or living a life similar to what I currently have. However, this is definitely changing. With movies like Crazy Rich Asians and the general rise of Asian actors in Western media, there is now a push for representation of Asian people and women in all aspects of life. Representation is important because it positively impacts people to see various potential versions of yourself, and empowers them to pursue avenues that they may not have realised were available to them.

The change we need

I believe that workplaces should be working harder to foster an environment where everybody’s voice can be heard regardless of gender or position. Inclusivity and diversity are the pillars of innovation. Ultimately, the responsibility of supporting women does not only fall on women and I think that everybody – especially people in power – should also regularly check in on their unconscious bias when making decisions.

Advice to younger women

Truly learn how to back yourself, as I think it’s ingrained in women from a young age to doubt ourselves. It’s important to remind yourself that it’s okay to ask for help and I have found that building a supportive network where you feel safe to share both the positive and uncomfortable feelings has been invaluable.

Dr Cori Stewart

Dr Cori Stewart is currently the CEO of ARM Hub, Associate Professor at QUT and a Chief Investigator on the Design Robotics project. The opportunity for Design Robotics was triggered from her relationship with UAP, which led to QUT developing the Design Robotics team.

First job

Like many of us in our group, I actually started out as a visual artist and did a lot of writing for newspapers about art as well. When I was about 25, I successfully applied to a Youth Arts Mentorship program. At the same time, I did an arts, culture and media policy degree. And then I went into the Brisbane City Council and became a Creative City policy officer. I was doing three things at once – just because I like to do it all.

Career moments

Getting into the Youth Arts mentorship program at the time was extraordinary as it was a paid mentorship for the better part of a year. We were teamed up with mentors and I got to understand how decisions on funding and policy settings were made and continue as a visual artist at the time.
Later I was appointed as the Creative City Policy Officer with the city council and it was just heaven for me: it was regular pay, and I got to work in arts and culture while cutting my teeth in managing politics and policy making. We wrote Brisbane’s Creative City Policy, which was a piece of work that remains important to me. I did my Masters degree on that and then a PhD. But in the Creative City policy officer role, I was in a terrific team, had the ability to learn, and could take the initiative to shape things. I had complete ownership of that job, which I lived and breathed for some time.
It’s also been great to watch the Design Robotics project flourish with a great number of people and diversity amongst us. It has become a touch point of what good collaboration looks like for many people, both in the project and outside it.

Challenges

I have mostly worked in industries where there were very few jobs at the top to aspire to. It has been a real challenge. It was never “Hey, this job’s for you” or “we’re thinking about you for this”. So, there is a lot of creating things from the ground up, like the ARM Hub. So, what might be a marker for me is when leaders of companies as well as research leaders bring opportunities to the ARM Hub, instead of me (and others) doing all that intense relationship development to make each opportunity happen. It would be especially significant and incredibly productive if more of our male leaders participated more in this way.

Wishlist for Design Robotics

ARM Hub grew out of the Design Robotics project, and Design Robotics forms a specialised group within ARM Hub. I hope that we continue to draw on our unique capabilities and generate a whole range of projects that transform industry and continue to collaborate in an exciting transdisciplinary manner. I also hope that we draw from the great diversity we have in the group: across genders and different cultural backgrounds. Even though we live the practice of collaboration every day, we forget sometimes that our ability to collaborate is our superpower. When we get to do interesting things in collaboration with other companies, they see it too.

Inspirations

I’m inspired by the many amazing women I get to spend my work and life with. In the cultural space, at the moment, I really, really admire the career and work of Margaret Atwood as well as Elizabeth Moss who features in Atwood’s Handmaid’s Tale. I do like Moss’s work beyond that too. I believe they’re really important icons for women.

The importance of visibility

In most of the environments I have worked there were and are a lot of women in leadership roles. But I have to say that dominantly female environments are as complicated as dominantly male environments. One reason is because as a whole, in the technology industries and in institutions including governments, women don’t often have the power networks and the financial networks. So, we were quite curtailed by that. But I did get to exist alongside a lot of women leaders.
It’s interesting that the opportunity for me to take leadership was only when I stepped outside arts and politics. Here I mean leadership where I’m running a company and have significant personal legal responsibilities. If you have a good idea, if you do the work … gosh! It’s been a lot of work. But if you just keep at it long enough and don’t crumble to that sense of imposter syndrome and learn to sit with the discomfort in all the new spaces you will enter, it is clear there is a critical role for boundary spanners who knit the whole picture together.
There was an article in the Courier Mail last week, with the headline “Tech won’t take your jobs”. It called me a tech expert and that made me very uncomfortable because I don’t see myself as a tech expert. I’m definitely a leader in the tech space but not a tech ‘expert’. While you can’t control what the media say, my first gut instinct was that the Courier Mail outed me. Of course, this is my conditioning to feel a kind of shame here, and it is the conditioning of a lot of women in their careers not to transgress boundaries and carefully manage such slippages. So, I think it is important to call out this conditioning and in response be the strong woman in unknown spaces because of what it will mean for future generations of women who will join such boundary spanning roles. I want them to know it is completely okay to sit in unknown and uncomfortable spaces, do the hard work and lead.

The change we need

I believe that anyone can look at Design Robotics as an example of watching women take on challenges with the support of a whole team. As a team we can provide diverse input that is valued across the different stakeholders and partners of the project. So, Design Robotics has become its own icon with its own value and merit. But beyond that, I still think that we women need to work together at the highest levels and demonstrate what it means to support women in the media and through political leadership. The reality is, how do we do it every day? How do we make sure that everyone has a voice given their position, gender and the knowledge they are bringing to the table? I have often not been in the position where I’ve been able to make decisions, but when I am able to influence decisions I like to check-in. When someone says, “Oh, you know she’s not ready for that opportunity”, I ask why?

Advice for younger women

Try to find those leadership opportunities and as soon as you can, take them. Be okay with big steps and not knowing everything. Leadership is about how you approach it, not what you know.
A shout out to the Design Robotics, ARM and UAP teams, and with special thanks to Dr Glenda Amayo Caldwell, Dr Claire Brophy, Dr Jing Peng, Peta Portelli, Amanda Bell, Emma Lane, and Amanda Harris.
The original article features on 12th June 2020 on Parlour. Edited by Susie Ashworth.

Categories
Knowledge Sharing

BRINGING THE JOY | WORLD OPEN INNOVATION CONFERENCE

Dr Claire Brophy
Design Robotics Research Fellow

Dr Brophy presented a research paper on how design methods were employed to map the ARM Hub ecosystem at the World Open Innovation Congress (WOIC) in Rome in December 2019. Open Innovation is a way of thinking about and managing innovation where firms purposely manage their approach to innovation by bringing in innovations from outside their business and also allowing innovations from inside their business to be developed further by others. 
Tell us about what WOIC is about. What were you doing out there?
Claire: This was the 6th annual World Open Innovation Conference. It’s an annual event that brings together representatives from industry and academia to focus on the emerging field of open innovation. The attendees were predominantly from Business and Management backgrounds. My presentation was about the ARM Hub – (the Advanced Robotics for Manufacturing Hub) and a design workshop we conducted to visualise what the ARM Hub could be, and who it would represent. The workshop used participatory design approaches, so really tangible, creative ways to explore the abstract concept of open innovation. At the conference, it was perhaps the only one that took this kind of approach to the concept of open innovation. 

The paper about the Design Robotics Workshop on Open Innovation was presented at WOIC. It featured design approaches such as the Tangible Mapping Method.

 
Given that you presented design approaches, how do you think it was received in this business-academic setting?
Claire: I was nervous about presenting to an entirely new field,  but it was actually really well received. One of the conference chairs thanked me later for “bringing the joy” to our session. It  felt great to bring design in approaches and invigorate the conversation around open innovation. After the session, a lot of the attendees agreed that taking this tangible approach levelled the playing field and was a creative, engaging way to approach unfamiliar concepts. Educators in particular, shared their own experiences about how they are trying to incorporate engaging methods like this into their teaching.
 
Do you have any favourite sessions?
Claire: Yes, so many good ones. The one by Francesco Starace, CEO of Enel, the Italian utilities provider He spoke at length about the way he introduced open innovation approaches in this massive, traditional Italian company and the challenges that he had around that. They tried out different creative approaches such as encouraging staff to share their failures in order to change the culture around “don’t come to me with problems only come to me with solutions”.  And he also talked about the way they are finding transformative and innovative ways to adapt and retrofit advanced technologies to old machines. He talked about “listening to the machines” which struck a chord with me within regards to my work in Design Robotics. He explained how traditionally technicians would be able to “hear” that the machines are having problems; that there is a language in the sounds of the machines. His story was really interesting around that kind of successful approach to innovation.
Another one was from notable Professor Anita McGahan of University of Toronto. The broader theme around the conference was around how to address the United Nations Sustainable Development Goals. She gave this impassioned call-to-action at the end of her keynote. That we cannot possibly carry on the way that we are carrying on and we need widespread dramatic changes of perspective. Her talk resonated with me for quite some time after the conference. 
Professor Henry Chesbrough (he coined “open innovation”) had an interesting wrap-up. He spoke wanting to open up the conversation between industry and academia to better facilitate this flow of knowledge from academia into industry. He shared that the main feedback that had received over the conference was that this relationship between academia and industry is underdeveloped. It is important to bridge this gap. I feel that design – and the work the Design Robotics team is doing in our partnership between academia (QUT/RMIT) and industry (UAP) is a great example of this.
 
Do you plan to head to WOIC in 2020? What do you think you would do?
Claire: Yes, it would be great to go back. It was a really nice opportunity to present our work to a global audience and introduce the creative open innovation approach we are taking. I think for next time, it would be good to run our work as a workshop at the conference. I’ll be bringing joy back!
 
Conference Name: World Open Innovation Conference 2019
Date: 12-13 December 2019
Location: Luiss University, Rome, Italy
Program: Link
 
Related work
Advanced Robotics Manufacturing: Arm Hub Announced

Categories
_ Industry News Knowledge Sharing

INDUSTRY 4.0 | THE FUTURE OF WORK


As we gear-up for digital disruption, the future of how we will live and work in Australia is uncertain. Artificial Intelligence and developments around robotic and autonomous systems of Industry 4.0 offer opportunities to rethink human/robot interaction. Design Robotics brought together academia, industry and government to this IFE Future of Working And Living Breakfast to have a connected and dynamic discussion about the development of skills, training and the question of how to shape future technologies. Hosted by QUT’s Institute for Future Environments and the Design Lab, the session began with the Hon. Cameron Dick, Minister for State Development, Infrastructure and Planning, began by reiterating the Palaszczuk Government’s vision of the advanced manufacturing sector to be an international leader by 2026 as evident by the ARM Hub partnership.

Future of Working and Living

The session began with Dr Sean Gallagher discussing how key exponential digital technology, digital hyperconnectivity and digital ecosystems is changing the face of work. He went on to discuss how digital technologies are going to take on routine and predictable tasks but the current mindset is unable to envision that future work will focus on creativity and innovation. This was illustrated through various examples such as UAP’s work with robots, remote mowing systems and a telecom company that has a specialised ‘disruption ready’ workgroup. He ended his talk with 10 ways to Reimagine Work, which included having agile flat-structured working groups, a risk-taking and resilient mindset and most importantly, that ‘ideas’ are going to be the most valuable feature of future work.

Labour in the digital economy: A looming crisis of (in)decent work? 


Prof Paula McDonald discussed the precariousness of decent work with the rise of gig work in the digital age. While the talk covered the dichotomy of technology i.e. where the price of being connected is the loss of privacy, she documented ways that workers were resisting being monitored and surveilled.  She concluded her talk by recognizing that as future work gets diverse and individualised, it is important to ensure standards of decent work and job security. 

Design Robotics: UAP’s Collaboration between IMCRC, QUT, RMIT


This talk showcased UAP’s collaboration with the IMRC, QUT, RMIT on the Design Robotics for Mass Customisation Manufacturing project (2017-2022), to use innovative robotic vision systems and software user-interfaces to reduce the integration time between design and custom manufacturing. Matthew Tobin championed the use of cross-reality technologies such as Virtual Reality (VR) and Augmented Reality (AR) in manufacturing to reduce waste, empower creative design and support shorter delivery times. 

Q&A
  • Why and how are companies in Australia using design and technologies to drive the Future of Working and Living?
  • How can Australian universities and industry work together to develop design and technologies for the Future of Working and Living?
  • How can Australian universities and industry work together to foster skill development to address how we will live and work in the future?
  • How does policy impact and inform the Future of Working and Living?
IFE FUTURE OF WORKING AND LIVING BREAKFAST

Website | Eventbrite
Date: Wed 2nd October 2019 
Time: 7am-9am
Venue: QUT Design Lab, Gardens Point.

Categories
_ Knowledge Sharing News

JING PENG | BETTER ROBOT GRINDING

Jing Peng
Postdoctoral Research Fellow 

 
Favourite quote: “Self-discipline and Social Commitment” Tsinghua University’s motto 
Favourite Robot: Baymax, the soft inflatable robotic healthcare assistant.
Why robots?
Robots can improve the lives of people by making human work safer and more precise. For example, surgical robots can offer less pain and a faster recovery to patients.
Tell us a bit more about your background. How did you end up in Design Robotics?
My expertise is in developing ultra-precision low-damage polishing tools and machinery for chemical-mechanical polishing. I completed my BEng in Measurement, Control Technology and Instruments and my PhD in Mechanical Engineering at Tsinghua University. There I co-invented (with Prof. Xinchun Lu and Dewen Zhao) a conditioner for conditioning the polishing pad and we got a granted patent for that. The patent is cited by global market leaders, e.g. Siltronic AG, Fujikoshi Machinery.
My PhD thesis was on ultra-precision low-damage polishing and its mechanism for polishing KDP crystals. KDP crystals are soft, brittle and deliquescent. To achieve high performance as frequency convertors in high power laser systems, they need to have a super-smooth surface. To further investigate the crystals’ mechanical properties, I joined Prof. Liangchi Zhang’s group at UNSW and carried out nanoindentation tests with a conical diamond indenter. We discovered the elastic-plastic deformation of KDP crystals under nanoindentation. Then I returned to Tsinghua and built the theoretical model for polishing and through lots of polishing tests achieved surface roughness of 0.62 nm* for KDP by optimizing various machining conditions and slurry formulation. 
After graduation, I worked as a Postdoctoral Fellow in Surgical Robotics and Soft Robotics at the University of Hong Kong. While leading the surgical robot project, I co-invented (with Prof. Zheng Wang, Prof. Zhiqiang Chen and Prof. James Lam) arm units and surgery robot systems and we received a granted patent for that. The project team built generations of surgical robot prototypes with 6mm diameter robot arm. These are tiny enough to go through natural orifices with a dexterity of 7 DOF and large output force to perform surgery. I also designed and fabricated soft actuators for a soft robotic manipulator project.
All of these varied experiences set the stage for me to work with robots for advanced manufacturing in Design Robotics.
*nm= a nanometer, which is 1/1,000,000,000 of a meter; 0.62 nm surface variation is a surface variation of less than 1/100000th of the thickness of a human hair.
Tell us a little more about the problem you are solving in Design Robotics.
I am adding pneumatic-controlled soft actuation into Design Robotics and integrating precisely controlled pneumatic soft actuation with industrial robots and advanced computer vision to realize automated high-quality sanding, grinding and polishing of UAP sculptures. I am also doing mechanical design for the linishing tests.
What has been your biggest joy with the project so far?
I have been part of Design Robotics since October 2019, so I am still new to the team. I get to work with great design and engineering professionals which is a wonderful experience for me. But mostly, getting to work with Prof. Jonathan Roberts, my supervisor and robotics researcher with experience in both academia and industry, has been my highlight so far. 
 
To connect with Jing and learn more about her work:
Design RoboticsQUT Profile  | LinkedIn | Google Scholar