Advances in automation and robotics are changing the way we work, make, and create. In the discipline of architecture, these advances are providing exciting opportunities for designers to experiment with building forms. This article provides a brief survey of emerging and experimental applications of robotics in architectural fabrication.   
Zaha Hadid Architects, based in London, have used exhibitions as a platform to experiment with digital fabrication. There are two examples of Hadid’s practice engaging with robotics for architectural fabrication. These are, Arrum, which was an installation for the Venice Biennale in 2012. The freestanding form was made from 488 unique interlocking metal panels. These panels were robotically folded along pre-scored lines to ensure the correct curve in the folds and then the form was assembled by hand. Robotically folded metal could provide a faster alternative to casting or incremental sheet forming. You can view how the sheets of metal were folded by two robotic arms in this video here:

Another project by Zaha Hadid Architects, called Thallus was exhibited at the Salon Del Mobile in 2017. The installation used a combination of fabrication techniques. A polystyrene form was first cut with hot wire and was then used as a base onto which the curving lattice work was 3D printed. A 3D printer head was attached to a robotic arm and the form was printed in a thermoplastic material using a production method called Fused Filament Fabrication (often referred to as FDM). There were some issues with the final structure, which needed some additional reinforcement to stay together because the printed lines delaminated. You can see the entire production process for this installation in this video here: 

An innovative project that is advancing 3D printing with metal is the MX3D Bridge. This project started in 2015 and is due for completion in 2018. It involves 3D printing a bridge from an incremental building up of welded stainless steel. The bridge will be printed as one single piece. The robots will move out over the structure as it is built. Originally intended to be built on-site, it is instead being fabricated it in a workshop.

Another project that exhibits an innovative application of 3D printing is the Daedalus Pavilion by AiBuild (2016). This project was a 3D printed pavilion for a technology conference. The scale of printing for this project is impressive as it shows how robotic arm printing can be used to produce much larger structures than what can be achieved with desktop 3D printing.

The last example of 3D printing presented in this article is Phantom Geometry by Kyle & Liz Von Hasseln from SciArc in the USA completed in 2011. This is a highly experimental work exploring robotic 3D printing with the ‘DLP’ method. This is where digital light is used to cure a UV sensitive resin. It’s an alternative to fused deposition modelling (FDM), which is more commonly used with robotic 3D printing.

Another experimental digital fabrication method to come out of SciArc is sPhysical by Besler, Kosgoron, Tuksam, & Vikar, completed in 2011. This is a highly experimental work that uses robot-controlled heat guns to control the deformation of plastic shapes.

The next two examples show how robots can be used to ‘weave’ structures. The first is called Elytra Filament Pavilion exhibited at the Victor and Albert Museum by Achim Menges from the University of Stuttgart created in 2016. This is the latest in a series of works from Achim Menges to explore a fabrication technique where carbon fibre strands are woven over a frame by a pair of robots. Once the carbon fibre sets, the frames are removed and the pieces are light enough to be lifted by a single person. The pieces are then assembled on-site.

The second example of robotic welding involves the use of natural materials. This project, titled Robotic Softness, also emerged from the University of Stuttgart by Giulio Brugnaro and was completed as a Masters Thesis Project in 2015. The project explored the ability of a robot to produce woven structures from cane. It is notable because it does not rely on a pre-programmed script, but instead used a ‘behavioural approach’ which used a vision scanning system to detect where the cane material was and adjust its movements accordingly.

This next project also used natural materials. Titled, Wood Chip Barn, it was completed in 2016 by students at the Architectural Association. The students used tree forks from a local forest to make beams. These were assembled into the frame for a large structure. The trees were scanned and then milled into by a robot so that they would fit together.

The last two projects featured in this article hail from the Swiss Federal Institute of Technology, better known as ETH, in Zurich. One is the Smart Dynamic Concrete Casting, which is a novel process for forming load bearing concrete columns. A robotic forming head moves with the concrete and shapes it to the desired profile as the concrete is setting. A steel frame is fabricated first for the concrete to be formed over.  

And lastly, from ETH is the project titled, Stratifications, by Gramazio and Kohler. This is a system that explores stacking as a fabrication technique. The interesting aspect to this project is that the robot responds to variations in the structure as it goes. It uses a scanning device to get feedback on the structure and adapt to it.

This is just a brief survey of advanced manufacturing technologies that have the potential to change the way designers and architects work. Do you know of any other examples that you think we should profile on this website? Or are you developing your own technologies, or working with digital fabrication and would like us to profile your work? Please get in touch via email info@designrobotics.net